

ASTRIS Towards zero failure

Vice-President

Technical

Ensimag C # .NET 2 nd startup created

Nadine Martin

Vice-President

Technology

Engineer Electronic Physics PhD TS Signal analysis expert

Nicolas Saubin ³ Master in Management

President

IAE 4th ^{startup} created

Pascal Gain

Vice-President Sales

Ecole Centrale Lille Marketing, Sales, Communications

Predictive maintenance of Rotative Machine

Towards zero failure

General principle of AStrion

From any Rotating system

Towards zero failure

VIB6_GeneratorBack	112 signals	4 warnings	3 alarms	D
VIB1_MAIN_BEARING	771 signals	1 warnings	0 alarms	D
IB5_GENERATOR_FRONT	198 signals	5 warnings	5 alarms	C
/IB4_PARALLEL_GEAR_1	210 signals	9 warnings	7 alarms	C

Fault detection Fault localization Severity tracking

Implementation: Simple and fast journey

- Provide a description of your system including a rotative machinery
 - Selection of most suitable sensor(s) position(s)

Interface with your systems (Signals transmitted via the existing LAN through existing industrial protocols)

Transmission secured with privatized cloud for AStrion operation

Commission and benefit from a fully automated Operation

Automated and innovative fault identification

The innovations brought by AStrion

Extraction of indicators for each signal

Thin band analysis: high resolution, multi-method

> Innovative methodology for calculating attributes of frequency peaks

100% spectral band analyzed

AStrion-D

AStrion-I

Validation Datas

non-stationarity index calculation : a hypothesis test by frequency

Automatic angular resampling : compensation for small residual variations

Automatic selection of valid data

harmonic families

Each family of harmonics characterizes a component and therefore its state

AStrion-H

Grouping of

Calculation of modulation sidebands: characterizes a defect

Calculations of specific indicators

Monitoring of health indicators by family

Monitoring of indicators in a time**frequency plan** : generation of trends

Trend variations are characteristic of the physics of the component and therefore of its state of health

AStrion -T

AStrion -S

Raising of alarms

drift analysis : incremental algorithm, space dimensionality regulated by indicators

Automatic identification faulty components

Characterization of the severity level

Keys to AStrion operation

Nonstationarity measures

Extraction of non - stationarity of the signal

Analyzes carried out on 100% of the frequency band (Thousands of frequencies)

Focus on very fine frequency bands

s(3) MB XC25695C.BPFI Energies(

2015

Evolution followed harmonic

lovembi

2015

All alarms are characterized and categorized automatically by an artificial intelligence module

Use case: detection of the fault of a wind turbine bearing with 6 months of anticipation

Arfons Wind Farm, FRANCE 11 wind turbine, 2MW each 2 instrumented: WT6 and WT8 European research project KAStrion 2012 - 2014

The 2 wind turbines are monitored and the analysis results are published. Sensors and software surveillance remain in place afterwards

30 December 2015 Main bearing breakage WT8 At VALEMO's request, we postanalyzed the data for the year 2015 after the fact

ALERT	ALARM	DEFAUT
February 2015	April 2015	30 th December 2015
LOCALIZATION MB_XC25695C.BPFI Inner ring main bearing	INCREASE in the degree of severity	Broken main bearing

Why choose Astrion?

References – 10 years of industrial experience

Monitoring based on time-frequency tracking of estimated harmonic series and modulation sidebands

CMMN014

International conference on Condition Monitoring of Machinery in Non-Stationary Operations DTG of the sure et d'expertise

Wind Turbine Control and Monitoring

Wind turbine CM – August 2015

SUstainable PREdictive Maintenance for manufacturing Equipment

OneTech R&D Wind Program

